Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0358219960230030269
Korean Journal of Fertility and Sterility
1996 Volume.23 No. 3 p.269 ~ p.276
Expression of Rat Growth Hormone Releasing Hormone (GHRH): intrapituitary factor for lactotroph differentiation?


Abstract
Biosynthesis and secretion of anterior pituitary hormones are under the control of specific hypothalamic stimulatory and inhibitory factors. Among them, Growth Hormone Releasing Hormone (GHRH) is the major stimulator of pituitary somatotrophs
activating
GH gene expression and secretion. Human GHRH is a polypeptide of 44 amino acids initially isolated from pancreatic tumors, and the gene for the hypothalamic form of GHRH is organized into 5 exons spanning over 10 kilobases (kb) on genomic DNA and
encodes a messenger RNA of 700-750 nucleotides. Several neuropeptides classically associated with the hypothalamus have been found in the extrahypothalamic regions, suggesting the existence of novel sources, targets and functions. GHRH-like
immunoreactivity has been found in several peripheral sites, including placenta, testis, and ovary, indicating that GHRH may also have regulatory roles in peripheral reproductive organs. Furthermore, higher molecular weight forms of the GHRH
transcripts
were identified from these organs (1.75 kb in testis; 1.75 and>3 kb in ovary). These tissue-specific expression of GHRH gene suggest the existence of unique regulatory mechanism of GHRH expression and function in these organs. In fact,
placenta-specific
and testis-specific promoters for GHRH transcripts which are located in about 10 kb upstream region of hypothalamic promoter were reported. The use of unique promoters in extrahypothalamic sites could be refered in a different control of GHRH
gene
and
different functions of the translated products in these tissues.
Somatotrophs and lactotrophs have been thought to be derived from a common bipotential progenitor, the somatolactotrophs, which give origins to either phenotypes. Although the precise mechanism responsible for the lactotroph differentiation in
the
anterior pituitary gland has not been yet clalified, there are several candidators for the generation of lactotrophs. In human, the presence of GHRH peptides with different size from authentic hypothalamic form in the normal anterior pituitary
and
several types of adenoma were demonstrated. Recently our group found the existence of immunoreactive GHRH and its transcript from the normal rat anterior pituitary (gonadotroph> somatotroph> lactotroph), and the GHRH treatment evoked the
increased
proliferation rate of anterior pituitary cells in vitro. The transgenic mouse models clearly shown that GHRH of NGF overexpression by anterior pituitary cells induced development of pituitary hyperplasia and adenomas particularly GH-oma and
prolactinoma. Taken together, we hypothesize that the pituitary GHRH could serve not only as a modulator of hormone secretion but as a paracrine or autocrine regulator of anterior pituitary cell proliferation and differentiation. Interestingly
enough,
the expression of Pit-1 homeobox gene (the POU class transcription factor) was confined to somatotrophs, lactotrophs and somatolactotrophs in which GHRH receptors are expressed commonly. Concerning the mechanism of somatolactotroph and lactotroph
differentiation in the anterior pituitary, we have focused following two possibilities; (1) changes in the relative levels or interactions of both hypothalamic and intrapituitary factors such as dopamine, VIP, somatostatin, NGF and GHRH; (2)
alterations
of GHRH-GHRH receptor signaling and Pit-1 activity may be the cause of lactotroph differentiation or pituitary hyperplasia and adenoma formation. Extensive further studies will be necessary to solve these complication questions.
KEYWORD
FullTexts / Linksout information
Listed journal information
KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø